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ABSTRACT
Inbreeding depression is a general phenomenon that is due mainly to recessive deleterious mutations,

the so-called mutation load. It has been much studied theoretically. However, until very recently, population
structure has not been taken into account, even though it can be an important factor in the evolution of
populations. Population subdivision modifies the dynamics of deleterious mutations because the outcome
of selection depends on processes both within populations (selection and drift) and between populations
(migration). Here, we present a general model that permits us to gain insight into patterns of inbreeding
depression, heterosis, and the load in subdivided populations. We show that they can be interpreted with
reference to single-population theory, using an appropriate local effective population size that integrates
the effects of drift, selection, and migration. We term this the “effective population size of selection”
(N S

e ). For the infinite island model, for example, it is equal to N S
e � N(1 � m/hs), where N is the local

population size, m the migration rate, and h and s the dominance and selection coefficients of deleterious
mutation. Our results have implications for the estimation and interpretation of inbreeding depression
in subdivided populations, especially regarding conservation issues. We also discuss the possible effects
of migration and subdivision on the evolution of mating systems.

INBREEDING depression, the decline of fitness of in- mutations (Charlesworth and Charlesworth 1987).
Fully recessive mutations are maintained in higher fre-bred individuals relative to outbred ones, is a general
quencies than partially recessive ones and thus causephenomenon observed in many species (Charlesworth
greater declines in fitness under consanguineous mat-and Charlesworth 1987) and for a long time (Darwin
ings. Inbreeding depression can be easily estimated by1876). It has been much studied theoretically (Lande
comparing the performances of progenies produced byand Schemske 1985; Charlesworth et al. 1990b;
outcrosses vs. consanguineous crosses. On the contrary,Bataillon and Kirkpatrick 2000) and experimentally
one cannot estimate the load directly because the ideal(Schemske and Lande 1985; Husband and Schemske
reference population does not exist. A better knowledge1996) because it is supposed to play a key role in the
of the load and inbreeding depression can be obtainedevolution of mating systems and to challenge the viabil-
by characterizing the properties of deleterious muta-ity of small populations. The genetic basis of inbreeding
tions (mutation rates, level of dominance, and deleteri-depression has been extensively investigated and it is
ous effect) and different methods have been proposednow recognized that it is due mainly to deleterious and
to estimate them (for review, see Deng and Fu 1998;partially recessive mutations, even if polymorphism
Bataillon 2000a). One method relies upon mutationmaintained by balancing selection may also play a role
accumulation experiments (Mukai et al. 1972), whereas(Charlesworth and Charlesworth 1999). The mu-
the others use measures of inbreeding depression ortation load is often defined as the decline of mean
some equivalent (Charlesworth et al. 1990a; Dengfitness due to mutation accumulation relative to an ideal
and Lynch 1996; Deng 1998).population free of mutation (Crow 1970). In very large

In methods using measures of inbreeding depression,populations, the mutation load depends only on the ge-
the underlying models neglect two potentially impor-nomic mutation rate (often referred to as U; Haldane
tant factors: population size and population structure.1937), while the magnitude of inbreeding depression
Nevertheless, population size and genetic drift may havedepends on U and on the levels of dominance of the
a huge impact on the expected inbreeding depression
due to deleterious mutations. Moreover, drift has oppo-
site effects on the load and inbreeding depression: the
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MODELS AND RESULTSfor inbreeding depression (Bataillon and Kirkpat-
rick 2000). Population subdivision introduces two addi- General presentation
tional complications for studying the effects of de-

We consider a single locus with two alleles in a meta-leterious mutations. First, the outcome of selection is
population of K demes, each composed of N diploiddependent on process both within populations (selec-
individuals, connected by migration. Individuals succes-tion and drift) and between populations (migration).
sively experience mutation and reproduction in eachSecond, crosses and their fitness can be defined at differ-
local deme. After zygotic migration, selection occursent scales and the choice of a reference is thus crucial,
within each local deme, followed by density regulation.as already pointed out by Waller (1993) and Keller
The contribution of each deme to the next generation isand Waller (2002).
constant and independent of the mean fitness of theSome experimental studies have attempted to esti-
deme. The wild-type allele, A, mutates at rate � to a par-mate inbreeding depression and/or heterosis in subdi-
tially recessive, deleterious allele, a. The reverse mutationvided populations. Heterosis can be defined as the ex-
occurs at rate � with � � �. The relative fitnesses of thecess in mean fitness of individuals produced by crosses
AA, Aa, and aa genotypes are 1, 1 � hs, and 1 � s,between demes relative to mean fitness of individuals
respectively, where s is the selection coefficient and hproduced by outcrosses within deme. Some studies have
the dominance coefficient. For simplicity, we analyzeaddressed population levels and hierachical measures
only the case where h and s are identical across allof inbreeding depression (Ouborg and Van Treuren
demes. We first consider random mating in each deme.1994; Carr and Dudash 1995; Byers 1998; Richards
For a deleterious mutation segregating at frequency xi2000; Sheridan and Karowe 2000) while others have
in the ith deme, we can define the mean fitness ofconducted only global analysis (Saccheri et al. 1998;
individuals produced by the different types of crosses.Van Oosterhout et al. 2000). In both types of studies,
The mean fitness among individuals produced by out-inbreeding depression and the mutation load are often
crossing, in the ith deme, WO

i , is equivalent to the meannot clearly distinguished. Indeed, until very recently,
fitness of the deme assuming random mating, W within

i :the lack of theoretical predictions on the expected pat-
terns of inbreeding depression, heterosis, and the load W within

i � W O
i � 1 � 2hsxi(1 � xi) � sx 2

i . (1a)
in subdivided populations was patent. Selection in sub-

The mean fitness among individuals produced by selfingdivided populations has already been investigated (Mar-
in this deme isuyama 1972a,b,c; Nagylaki 1989). However, to our

knowledge, only two recent studies have focused on the
W S

i � 1 � hsxi(1 � xi) �
s
2
(x 2

i � xi). (1b)patterns of inbreeding depression in subdivided popula-
tion. Theodorou and Couvet (2002) have used numer-
ical computations to study specifically the joint effect Finally, we can define the mean fitness of individuals
of selfing and population subdivision on the evolution produced by crosses between parents coming from dif-
of inbreeding depression. Whitlock (2002) has devel- ferent demes, i and j :
oped an analytical method for large metapopulations

W between
ij � 1 � hs(xi � xj) � s(1 � 2h)xixj . (1c)and weak selection, adressing the outcome of selection

and its prediction using neutral FST. In deme i, we define inbreeding depression, �i , as the
Here, we present a general method to study the pat- decline in mean fitness of selfed individuals relative to

tern of inbreeding depression, heterosis, and mutation outcrossed individuals within the deme (Charlesworth
load expected for a broad range of population structure. and Charlesworth 1987), and the genetic load, Li, as
We have adapted a two-locus diffusion method, devel- the decline in the mean fitness of the deme relative to
oped by Ohta and Kimura (1969, 1971), to a one-locus the optimal genotype (AA; Crow and Kimura 1970):
treatment in multideme systems. We obtain analytical
results in the case of strong selection that naturally lead

�i(xi) � 1 �
W S

i

W O
i

�
s(1 � 2h)xi(1 � xi)

2(1 � 2hsix(1 � xi) � sx 2
i )

(2a)
to the definition of a new effective population size,
which integrates the effects of selection, drift, and mi-

Li(xi) � 1 � W within
i � 2hsxi(1 � xi) � sx 2

i . (2b)
gration. The pattern of inbreeding depression, hetero-
sis, and the load can be comprehensively interpreted We define the heterosis, Hij , between two demes i and
with reference to single-population theory, using this j as the excess in mean fitness of individuals produced
effective population size. Our results suggest a way to by outcrosses between demes relative to mean fitness of
define and estimate inbreeding depression and the load individuals produced by outcrosses within the demes.
in subdivided populations. We also discuss the implica- We also define between-deme inbreeding depression,
tions of our results for the evolution of mating systems �ij , as the decline in mean fitness of selfed individuals

relative to outcrossed individuals between demes.and conservation issues.
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to write the following infinitesimal terms: the mean changeHij(xi, xj) � 1 �
1
2

W O
i � W O

j

W between
ij

�
s(1 � 2h)(x i � xj )2

2(1 � hs(xi � xj) � s(1 � 2h)xixj) of allele frequency, M�xi , the variance of the change of
(2c) allele frequency, V�xi , and the covariance of the change

of allele frequency in a pair of demes, W�xi ,�xj . M�xi re-
�ij(xi, xj) � 1 �

1
2

W S
i � W S

j

W between
ij

�
s(1 � 2h)(xi � xj � x 2

i � x 2
j � 4xixj)

4(1 � hs(xi � xj) � s(1 � 2h)xixj)
.

flects mutation, migration, and selection:
(2d)

M�xi
� 	mut(xi) � 	mig(xi) � 	sel(xi) for i � 1, . . . , K . (4a)

To obtain expected values for our load and inbreed-
Here, we assume that changes in allele frequency betweening depression parameters (L, �, H, �), we have to com-
generations are small enough to neglect interaction termspute the expectation of the four quantities previously
between these elementary processes. Further,defined over 
(x1, . . . , xK), the probability distribution

of the deleterious allele frequency over the K demes of
V�xi

�
xi(1 � xi)

2Ni

for i � 1, . . . , K (4b)the metapopulation. One can use Wright’s distribution
(see Wright 1969) or the extensions given by Maruyama

and(1972b) for stepping-stone models. However, because
these distributions are implicitly defined, only numeri-

W�xi�xj
� 0 for i � j . (4c)cal results can be obtained. Whitlock et al. (2000)

followed this approach to investigate the magnitude of According to Ohta and Kimura (1969, 1971), for any
heterosis and drift load for the infinite island model. f(x1, . . . , xK), a function of the deleterious allele frequen-
Here, we develop analytical approximations for the pat- cies in each deme, we have
terns of inbreeding depression in subdivided popula-
tions. If we are able to satisfactorily approximate �, L, dE
[f(x1, . . . , xK)]

dt
� E
��

K

i�1

M�xi

�f(x1, . . . , xK)
�xiH, and � by polynomial functions of degree p, their

expectations over 
 will depend only on the p first
�

1
2�

K

i�1

V�xi

�2f(x1, . . . , xK)
�x2

i
moments of 
. Practically, the two first moments are
sufficient: the load is a quadratic function of xi and good
approximations of �i, Hij, and �ij are obtained, assuming

� 2�
K

i�1
�
j�i

W�xi�xj

�2f(x1, . . . , xK)
�xi�xj

� .
that W within

i and W between
ij in the denominators of Equations

(5)2a, 2c, and 2d, respectively, are nearly equal to 1, which
is the case if xi � 1 (strong selection) but also if s � 1

Equation 5 corrects some typographical errors in Ohta(weak selection). So the mean inbreeding depression,
and Kimura (1971). We consider only the case whereheterosis, and load can be approximated by
the left-hand term is zero, which corresponds to the
stationary distribution 
. However, using tedious alge-
bra manipulations, temporal dynamics of the moments

E
[�i] � 1
2
s(1 � 2h)(E
[xi] � E
[x 2

i ]) for i � 1, . . . , K (3a)

E
[Li] � 2hsE
[xi] � (1 � 2h)sE
[x 2
i ] for i � 1, . . . , K (3b)

E
[Hij] � 1
2
s(1 � 2h)(E
[x 2

i ] � E
[x 2
j ] � 2E
[xixj]) for i � j (3c)

can be computed. When M�xi is linear in xi, we can
compute E
[xi], E
[x 2

i ], and E
[xixj] by choosing appro-
E
[�ij] � 1

4
s(1 � 2h)(E
[xi] � E
[xj] � E
[x 2

i ] � E
[x 2
j ] � 4E
[xixj]) priate f functions, one for each moment. Thus we have

to solve a system of 2K � K(K � 1)/2 equations, whichfor i � j (3d)
give the K moments E
[xi], the K moments E
[x 2

i ], and
the K(K � 1)/2 moments E
[xixj]. Because of the linear-where E
 denotes expectation with respect to the 

ity of M�xi , all moments of interest can be computed fordistribution.
arbitrary population structure, because the system to be
solved is linear with respect to all moments. However,

Analytical results for the case of strong selection
we consider only simple population structures where all

(Nhs � 1)
demes have the same properties (i.e., equal N, m, h, and
s), which greatly reduces the number of moments toOhta-Kimura equation for subdivided populations: To

compute the first two moments of 
, we adapted the compute. Note that, if M�xi is not linear in xi, the moment
equations form an infinite linear system and heuristicmethod developed by Ohta and Kimura (1969, 1971)

to study the linkage disequilibrium in two-locus models arguments must be used to close and solve it.
Assumptions for solving the system: 	mut(xi) and 	mig(xi)under mutation-drift equilibrium (see also Appendix 3

of Kimura and Ohta 1971 for details). This method has are linear terms but not 	sel(xi). To satisfy the linearity
condition on M�xi , we linearized the selection term in 0been used for two-locus problems in different situations

(e.g., see Petry 1983; Nordborg et al. 1996), but, to (xi � 1) following Robertson (1970) and Bataillon and
Kirkpatrick (2000): 	sel(xi) � �hsxi. This is equivalentour knowledge, this is the first time that it has been

adapted to model subdivided populations. to assuming that selection acts only against heterozy-
gotes. This assumes that deleterious alleles are not tooAccording to diffusion theory, for each deme, we need
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recessive (h � 0) and maintained in low frequencies; so are found to be equal and denoted E
[x2]. All the E


[xixj] are also found to be equal and denoted E
[xx
].it is also assumed that � � hs. This approximation is
thus valuable only if local drift is not too strong. In a Equations 9a and 9b can then be reduced to the follow-

ing system:single population these conditions correspond about to
Nhs � 5 (Bataillon and Kirkpatrick 2000). With low
migration rates, the analyical results are thus valid for







�2�� �
1

4N ��

hs

�2�2

hs







�







�2�hs � � � m �
1

4N� 2m

2m
K � 1

�2�hs � � �
m

K � 1�













E
[x2]

E
[xx
]







population sizes of the order of 100 at least. If migration
overwhelms local drift (high migration rates), we might

(9c)expect that xi will be in low frequency in all demes
such that the Nhs limit can be lower. Accuracy of the Solving the system gives the second-order moments:
approximation is now tested further against numerical
or simulation results. E
[x2] � ���hs�1 � 4Nm

Khs
m � (K � 1)hs

� 4Nhs
(K � 1)hs

m � (K � 1)hs��The K-island model: Computation of the moments: We
consider K panmictic demes of size N, connected by

� O(�2) (10a)
migration at a rate m. The infinitesimal diffusion terms
are given by Equations 4a–4c with (4a) becoming

E
[xx
] � ���hs�1 � 4Nm
Khs

m � (K � 1)hs
� 4Nhs

(K � 1)hs
m � (K � 1)hs��

M�xi
� �hsxi � �(1 � xi) � mxi �

m
K � 1 �

j�i
xj for i � 1, . . . , K .

�
m

m � (K � 1)hs
� O(�2) . (10b)(6)

The reverse mutation, �, is neglected. Taking the limit of (10a) and (10b) for K going to infinity
For the function f(x1, . . . , xK) � xi, Equation 5 implies, gives the value for the infinite island model:

for the stationary distribution,

E
[x2] �
�

hs(1 � 4Nm � 4Nhs)
� O(�2) (11a)

E
[M�xi
] � � � (hs � � � m)E
[xi] �

m
K � 1 �

j�i
E
[xj] � 0.

(7) E
[xx
] � O(�2) . (11b)

We can also compute the moments of the distributionConsidering the symmetry of the model, all the E
[xi]
of deleterious allele frequencies over the whole meta-are found to be equal and we drop the subscript i and
population, �. The frequency, y, of the deleterious allelerefer to them as E
[x]. Equation 7 can be simplified:
in the whole metapopulation is y � 1/K �K

i�1xi , implying
E
[x] �

�

hs
� O(�2). (8)

E�[y] �
1
K �

K

i�1

E
[xi] (12a)

Note that such linear approximation neglects the effect
andof drift and subdivision on the mean frequency of x.

For the function f(x1, . . . , xK) � x 2
i , Equation 5 im-

E�[y2] �
1
K 2��

K

i�1

E
[xi] � 2�
K

i�1
�
j �i

E
[xixj]� . (12b)plies

E
[2xiM�xi
� V�xi

] � 2(� �
1

4N
)E
[xi] Using Equations 8, 10a, and 10b, we obtain

E�[y] �
�

hs
� O(�2) (13a)� 2(hs � � � m �

1
4N

)E
[x2
i ]

and
�

2m
K � 1 �

j�i
E
[xixj] � 0 . (9a)

E�[y2] � ���hs�1 � 4Nm
Khs

m � (K � 1)hs
� 4Nhs

(K � 1)hs
m � (K � 1)hs��

For the function f(x1, . . . , xK) � xixj, Equation 5 implies

�
Km � (K � 1)hs
(m � (K � 1)hs)

� O(�2) . (13b)E
[xiM�xj
� xjM�xi

� 2W�xi�xj
] � �(E
[xi] � E
[xj])

Taking the limit for K going to infinity gives the value for�
m

K � 1
(E
[x2

i ] � E
[x2
j ])

the infinite island model and leads to E�[y2] � O(�2). In
the infinite island model, the distribution over the whole� 2(hs � � � m)E
[xixj]

metapopulation is, as expected, a Dirac’s � distribution
�

m
K � 1 �

k�i,k�j
(E
[xixk] � E
[xjxk]) � 0 . at the point �/hs.

“Effective population size of selection”: Using the same(9b)
approximation [linearization of 	sel(xi)] Bataillon and
Kirkpatrick (2000) have shown that, in a single largeConsidering the symmetry of the model, all the E
[x2

i ]
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Figure 1.—Effective population size of
selection as a function of migration rate for
different population structures. N � 1000,
h � 0.2, and s � 0.05.

but finite population, the deleterious allele frequency FST, can be defined for the selected locus as the ratio of
the among-deme variance over the total variance of allelefollows a � distribution with mean x̂ � �/hs � O(�2)

and variance �2 � �/hs(1 � 4Nhs) � O(�2). Comparing frequency,
this result to Equations 8 and 11a, we note that each

F S
ST �

E
[x2] � E
[xx
]
K/(K � 1)E
[x] � 1/(K � 1)E
[x2] � E
[xx
]

local deme under the infinite island model is equivalent
to a single population under this model, with a new

(16a)
local effective population size. We chose to call this
parameter “effective population size of selection.” Ex- (Wright 1969), which reduces to
tracting N from the expression for �2, we can generally
define this parameter: F S

ST �
E
[x2] � E
[x]2

E
[x](1 � E
[x])
(16b)

N S
e � 1

4hs�
�

�2hs
� 1� �

1
4hs�

�

V
[x]hs
� 1� . (14) for the infinite island model (see appendix a).

Using (8), (10a), and (10b), we find for the K-island
N S

e is defined as the population size of a single popula- model
tion where the two first moments of the distribution of
the deleterious allele frequency would be the same as F S

ST �
1

1 � 4Nm(K/(K � 1))2 � 4NhsK/(K � 1)
� O(�2)

in a local deme of the whole population. However, using
(17a)such effective size also provides good approximations

for higher moments (see Table 2 for skewness and kurto- and for the infinite island model
sis with Nhs � 30 and Nhs � 3).

For the K-island model, F S
ST �

1
1 � 4Nm � 4Nhs

� O(�2) . (17b)

N S
e � N

Km � (K � 1)hs
m � (K � 1)hs

, (15a) This means that, for strong selection, F S
ST at a selected

locus is much smaller than FST at a neutral locus. As
and for K tending to infinity, expected, strong and uniform selection limits popula-

tion differentiation. Selection prevents the local fixation
N S

e � N �1 �
m
hs� . (15b) of deleterious alleles and increases the effective migra-

tion rate of wild-type alleles such that differentiation
between demes declines. For weak selection, the resultsEquations 15a and 15b show that migration increases

the local effective population size (see Figure 1) and obtained are quite robust and Equations 17a and 17b
are still valid. Indeed, as s tends toward 0, we recoverthis increase is more important for recessive and weakly

deleterious mutations, which are the mutations that are the expected value for a neutral FST (see Figure 2 and
Whitlock 2002).the most difficult to purge in a single population.

F S
ST at the selected locus: An index of population struc- Average inbreeding depression, genetic load, and heterosis:

Using Equations 3a–3d, the expressions for the first-ture, denoted here F S
ST to distinguish it from the neutral
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Figure 2.—F S
ST at the selected locus in

the infinite island model as a function of
the number of migrants (Nm), for different
coefficients of selection. Curves correspond
to Equation 17b and symbols to numerical
results given by integration of Wright’s
equation for the infinite island model (see
appendix c). Neutral FST is also given. N �
1000, h � 0.2, � � 10�6, and � � 10�7.

and second-order moments and the expressions for the and inbreeding depression between demes by
F S

ST, we can now compute the average local inbreeding
depression and genetic load and the average heterosis E
[�] � �TOT�1 �

K � 1
K � 1

F S
ST� . (21)

and inbreeding depression between two demes.
Inbreeding depression is given by These derivations show that population subdivision

has opposite effects on inbreeding depression within
E
[�] � �TOT(1 � F S

ST) , (18) and between demes. It decreases local inbreeding de-
pression, compared to an infinite population, whereaswhere
it increases between-deme inbreeding depression. As
expected, heterosis also increases with subdivision. Ac-�TOT �

�(1 � 2h)
2h

cording to the expression of F S
ST, within-deme inbreed-

ing depression is smaller and between-deme inbreeding
� �1 � 1��1 � 4Nm

Khs
m � (K � 1)hs

� 4Nhs
(K � 1)hs

m � (K � 1)hs �
Km � (K � 1)hs
(m � (K � 1)hs)� depression and heterosis are correspondingly higher,

as migration, population size, and selection coefficient
� O(�2) .

are smaller (see Figure 3 for the infinite island model
�TOT is the average inbreeding depression over the whole and Figure 4 for K � 10).
metapopulation considered as a single unit, i.e., the Results for the load are slightly inaccurate because
inbreeding depression averaged over the � distribution. we have neglected the mild purging effect that occurs
It reduces to �TOT � �(1 � 2h)/2h � O(�2) in the infinite in finite but not too small populations under weak subdi-
island model, which corresponds to the deterministic vision when h � 1⁄3 (see S. Glémin, unpublished results;
inbreeding depression (Charlesworth and Charles- and Whitlock 2002). This purging effect has only weak
worth 1987). quantitative consequences on Equation 19 but some

In the same way, we can compute the average load, qualitative consequences under h � 1⁄3. For h � 1⁄3, Equa-
tion 19 is quite accurate (see Figures 4 and 5). For h �

E
[L] � LTOT � 2�DETF S
ST , (19) 1⁄3, the load decreases with weak subdivision before in-

creasing when subdivision is more important (see alsowhere
Whitlock 2002). However, these variations are weak

LTOT � 2� �
�(1 � 2h)

2h
1 � Km/((K � 1)hs)

K(1 � m/((K � 1)hs) � 4NmK/(K � 1) � 4Nhs) relative to the strong increase of the load in small popu-
lations (Kimura et al. 1963).

� O(�2) . The infinite island model with nonrandom mating:
With nonrandom mating, we need more general expres-LTOT is the average load over the whole metapopulation
sions for inbreeding depression, the genetic load, andcomputed over the � distribution. It reduces to LTOT �
heterosis as a function of the moments of the probability2� � O(�2) in the infinite island model, which corre-
distribution of deleterious allele frequency. The varioussponds to the deterministic load (Haldane 1937).
mean fitnesses of interest can be expressed as functionsHeterosis is given by
of the deleterious allele frequency and fixation index
FIS (Caballero and Hill 1992). We assume that allE
[H] � 2

K
K � 1

�TOTF S
ST (20)

demes have the same FIS. Within the ith deme,
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Figure 3.—Inbreeding depression
within (�) and between (�) demes and
heterosis (H) in the infinite island
model as a function of the number of
migrants (Nm). Curves correspond to
Equation 18 for within-deme inbreeding
depression, to Equation 20 for heterosis,
and to Equation 21 for between-deme
inbreeding depression. Symbols corre-
spond to numerical results given by inte-
gration of Wright’s equation for the in-
finite island model (see appendix c). N �
1000, h � 0.3, � � 10�5, and � � 10�6.
Thick curves and solid symbols corre-
spond to s � 0.05. Thin curves and open
symbols correspond to s � 0.1.

W within
i � 1 � 2hs(1 � FIS)xi(1 � xi) � s(x 2

i � FISxi(1 � xi)) (22a)
� 1

2
s(1 � 2h)(E[x 2

i ] � E[x 2
j ] � 2E[xixj]) (23c)

W O
i � 1 � 2hsxi(1 � xi) � sx 2

i (22b)

�(xi, xj) � 1 �
1
2

W S
i � W S

j

W between
ij

W S
i � 1 � hs(1 � FIS)xi(1 � xi) � s(x 2

i �
(1 � FIS)

2
xi(1 � xi)) . (22c)

With nonrandom mating, the mean fitness of the popu- � 1
4

s(1 � 2h)	(1 � FIS)(E[xi] � E[xj])
lation is different from the mean fitness of outcrossed
individuals. The mean fitness of individuals produced

� (1 � FIS)(E[x 2
i ] � E[x 2

j ]) � 4E[xixj]
 .
by crossing between parents of two different demes, i

(23d)and j, is the same as in the previous case. The four
quantities previously defined are now given by the fol- Computation of the moments: Following Caballero and
lowing expressions: Hill (1992) and Bataillon and Kirkpatrick (2000)

with the addition of migration, the infinitesimal diffusion
�i(xi) � 1 �

W S
i

W O
i

� 1
2

s(1 � FIS)(1 � 2h)(E[xi] � E[x 2
i ]) (23a)

terms are obtained from Equations 6, 4b, and 4c by chang-
ing h to hF � (h � FIS � hFIS) and N to Ne � N/(1 � FIS).

Li(xi) � 1 � W within
i � (FIS � 2h � 2hFIS)sE[xi] Here, the linearization of the selection term is equiva-

lent to assuming that selection acts only on heterozy-� (1 � FIS)(1 � 2h)sE[x 2
i ] (23b)

gotes produced by random mating and against homozy-
gotes produced by nonrandom mating.H(xi, xj) � 1 �

1
2

W O
i � W O

j

W between
ij

Figure 4.—Inbreeding depression
within (�) and between (�) demes, hetero-
sis (H), and the load (L) in the finite island
model (K � 10) as a function of the number
of migrants (Nm). Curves correspond to
Equation 18 for within-deme inbreeding
depression, to Equation 19 for the load, to
Equation 20 for heterosis, and to Equation
21 for between-deme inbreeding depres-
sion. Symbols represent results of stochastic
simulations. N � 100, h � 0.3, s � 0.05,
� � 10�4, and � � 10�5.



2200 S. Glémin, J. Ronfort and T. Bataillon

Figure 5.—The mutation load in
the infinite island model as a function
of the number of migrants (Nm).
Curves correspond to Equation 19.
Symbols correspond to numerical re-
sults given by integration of Wright’s
equation for the infinite island model
(see appendix c). N � 1000, h � 0.3,
� � 10�5, and � � 10�6.

Using Equation 5 for the same appropriate f func-
LTOT �

�(2h � FIS � 2hFIS)
(h � FIS � hFIS)

.tions and considering the symmetrical properties of the
island model, we can compute the first- and second-

Inbreeding depression between demes and heterosisorder moments of 
 in the case of nonrandom mating.
are now given byAll moments are found to be the same as in the panmictic

case (see Equations 8, 10a, and 10b), after replacement
of h by hF and N by Ne � N/(1 � FIS). E
[H] � 2

1 � FIS

�TOTF S
ST (25)

Effective population size of selection and selected F S
ST: As

previously defined, we can compute the effective popu-
E
[�] � �TOT(1 �

1 � FIS

1 � FIS

F S
ST) . (26)lation size of selection and F S

ST for the selected locus.
The results are the same as in the case of random mat-
ing, replacing N by Ne and h by hF . Contrary to a neutral Inbreeding due to nonrandom mating (FIS) decreases
locus, inbreeding decreases F S

ST . Inbreeding enhances both inbreeding depression and the load (as in an infi-
genetic drift (the effective size is divided by two for nite population). It also decreases heterosis and inbreed-
complete inbreeding) but also increases the apparent ing depression between demes (see Figure 6). With high
dominance coefficient hF. As a result, inbreeding leads levels of inbreeding, the effect of migration on the load
to more efficient selection, which in turn limits popula- and inbreeding depression (within and between demes)
tion differentiation. Similarly, inbreeding decreases the is very weak (see Figure 6A for inbreeding depression).
effective size of selection but unmasks deleterious alleles The effect of migration on heterosis is more important,
in homozygotes. The second process overwhelms the first even with inbreeding (see Figure 6B). For weak selec-
one. As a result, selection is more efficient with inbreeding tion, equivalent results have been obtained indepen-
in subdivided populations, just as in infinite ones. dently with numerical methods by Theodorou and

Average inbreeding depression, genetic load, and heterosis: Couvet (2002) for inbreeding depression and the load.
Using Equations 23a–23d and the expressions for the However, they found that for high inbreeding levels,
first- and second-order moments, we can now compute migration has also very little effect on heterosis.
the average local inbreeding depression and genetic The unidimensional stepping-stone model: We now
load and the average heterosis and inbreeding depres- consider a circular stepping-stone model with K panmic-
sion between two demes. For inbreeding depression, tic demes of size N, with K � 2p or K � 2p � 1. We
Equation 13 is still valid using the appropriate F S

ST and assume only local and equal migration between two adja-
�TOT � �(1 � 2h)(1 � FIS)/2(h � FIS � hFIS). cent demes. We now need to compute p � 2 moments:

The expression for the load is different from (18), E
[x], E
[x 2], as in the previous cases and the second-
order interdeme moments, E
[xixi�k] for a pair of demes

E
[L] � LTOT � 2
1 � FIS

1 � FIS

�TOTF S
ST , (24) separated by k steps, which depend on the distance

between demes. All the moments between two demes
at distance k are equal and we denote them E
[xxk]. Wewhere
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Figure 6.—Within-deme in-
breeding depression (A) and het-
erosis (B) in the infinite island
model as a function of the number
of migrants for different FIS values.
Curves correspond to Equation 16
for inbreeding depression with ap-
propriate �TOT and F S

ST and to
Equation 25 for heterosis. Sym-
bols correspond to numerical re-
sults given by integration of
Wright’s equation for the infinite
island model (see appendix c).
N � 100, h � 0.3, s � 0.1, � �
10�4, and � � 10�6.

then use p � 2 different f functions to solve the system with � � (m/(m � hs � √hs(2m � hs))) representing the
(see appendix b). Here, we give the results for the infinite correlation coefficient of deleterious allele frequencies
unidimensional stepping-stone model (K → ∞): between two adjacent demes. This result is numerically

consistent with the one found by Maruyama (1972c) for
finite linear stepping stones (see Equation 12 in Maruy-E
[x] �

�

hs
� O(�2) (27a)

ama 1972c with the number of demes tending to in-
finity).

E
[x 2] �
�

hs(1 � 4Nhs √(1 � 2m/hs))
� O(�2) (27b) We can also compute

N S
e � N√(1 � 2m/hs) (28)

E
[xxk] �
�

hs(1 � 4Nhs √(1 � 2m/hs))
�k � O(�2) (27c)

and
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Figure 7.—Heterosis as a function of the distance between demes in the stepping-stone model. Bars correspond to theoretical
predictions given by Equation 30. Symbols represent results of stochastic simulations with K � 20 demes. N � 100, h � 0.3, s �
0.05, � � 10�4, and � � 10�6.

selection, is much better predicted by the theory (see
F S

ST �
1

1 � 4Nhs √(1 � 2m/hs)
. (29)

Table 1). Consequently, as we have already said, the
expression for F S

ST is quite robust (see Figure 2) and
For inbreeding depression and mutation load, Equations remains a useful qualitative index of the level of popula-
18 and 19 still hold, and we can compute the heterosis tion differentiation at the selected locus. Because heter-
and inbreeding depression between two demes at dis- osis depends on the variance of allele frequency but not
tance k : on the mean (see Equation 3c), our approximations for

heterosis are also quite robust under weak selection.E
[Hk] � 2�TOTF S
ST(1 � �k) (30)

Approximations are less robust for inbreeding depres-
E
[�k] � �TOT(1 � F S

ST(1 � �k)). (31) sion and the load because they depend on both the
mean and variance of allele frequency (see EquationsThese equations clearly show that heterosis and between-
3a and 3b). In a single population, inbreeding depres-deme inbreeding depression increase with distance as ex-
sion and the load show clear patterns as a function ofpected (see Figure 7 for heterosis). If m is small, � � m/
the population size (Kimura et al. 1963; Bataillon and2hs, so maximum heterosis (2�TOTF S

ST) and inbreeding de-
Kirkpatrick 2000). Mutations of large effects (Ns � 1)pression between demes (�TOT(1 � F S

ST)) are reached for
segregate at low frequencies and cause most of the in-nearby demes.
breeding depression (Bataillon 2000b; see S. Glémin,Robustness and generalization of the analytical re-
unpublished results, for more precise conditions). Weaksults: The results above are not valid for weak selection.
mutations (Ns � 1) are maintained in high frequencyIndeed, because of genetic drift, the frequency of a
and tend to be fixed in the population and cause driftdeleterious allele can be high (near 1), so we cannot
load (for example, see Whitlock et al. 2000). The driftlinearize 	sel(xi) around xi � 0; i.e., selection against
load is much higher than the load due to segregatinghomozygotes aa cannot be neglected. However, we can
mutations. Moreover, these mutations also cause mostextend qualitatively our theory to more general sets of
of the heterosis (Whitlock et al. 2000). We predict thatparameters. The weakness of our approximations is that
the same patterns are expected in a metapopulationdrift and subdivision do not affect the mean frequency
with the population size corresponding to the appro-of the deleterious allele, which is always �/hFs. However,
priate effective size of selection. To test this heuristicthe variance of the frequency of the deleterious allele,

which leads to the definition of the effective size of prediction, we computed Wright’s equation for a single



2203Inbreeding Depression in Subdivided Populations

T
A

B
L

E
1

V
ar

ia
nc

e
of

th
e

de
le

te
ri

ou
s

al
le

le
fr

eq
ue

nc
y

in
th

e
in

fi
ni

te
is

la
nd

s
m

od
el

F I
S

�
0

F I
S

�
0.

2

s
�

0.
05

s
�

0.
01

s
�

0.
00

5
s

�
0.

05
s

�
0.

01
s

�
0.

00
5

N
eu

tr
al

m
F S

T
N

um
er

ic
al

T
h

eo
ry

N
um

er
ic

al
T

h
eo

ry
N

um
er

ic
al

T
h

eo
ry

N
um

er
ic

al
T

h
eo

ry
N

um
er

ic
al

T
h

eo
ry

N
um

er
ic

al
T

h
eo

ry

0.
00

00
1

0.
96

11
.2

10
.9

25
8.

9
25

5.
6

10
62

.8
93

3.
1

6.
4

6.
1

16
0.

7
14

4.
8

72
4.

3
54

3.
3

0.
00

00
3

0.
89

11
.2

10
.9

25
7.

2
25

3.
9

10
14

.2
92

1.
7

6.
4

6.
1

15
9.

8
14

4.
1

68
2.

3
53

8.
6

0.
00

01
0.

71
11

.1
10

.9
25

2.
1

24
8.

8
95

8.
6

88
7.

7
6.

4
6.

1
15

7.
2

14
2.

0
64

4.
7

52
4.

5
0.

00
03

0.
44

11
.0

10
.7

23
7.

4
23

3.
7

84
3.

8
79

4.
8

6.
3

6.
0

14
9.

6
13

5.
9

57
2.

6
48

4.
2

0.
00

1
0.

20
10

.5
10

.3
20

1.
2

19
6.

1
63

2.
8

59
7.

2
6.

1
5.

9
13

0.
2

11
9.

6
43

8.
5

38
9.

6
0.

00
3

0.
07

9.
4

9.
1

13
7.

8
13

0.
0

37
2.

8
33

4.
3

5.
6

5.
4

93
.7

86
.7

26
6.

5
24

0.
8

0.
01

0.
02

7.
0

6.
6

72
.8

62
.9

18
1.

8
13

9.
8

4.
4

4.
2

51
.9

46
.4

13
0.

1
10

9.
1

F I
S

�
0.

5
F I

S
�

0.
9

0.
00

00
1

0.
96

3.
7

3.
5

97
.8

83
.8

48
2.

6
31

7.
4

2.
3

2.
2

62
.3

52
.2

33
4.

1
19

8.
9

0.
00

00
3

0.
89

3.
7

3.
5

97
.4

83
.5

44
5.

5
31

5.
5

2.
3

2.
2

62
.1

52
.1

29
9.

8
19

8.
1

0.
00

01
0.

71
3.

7
3.

5
96

.2
82

.7
42

0.
6

30
9.

8
2.

3
2.

2
61

.5
51

.7
28

1.
9

19
5.

5
0.

00
03

0.
44

3.
7

3.
5

92
.6

80
.2

37
9.

3
29

2.
8

2.
3

2.
2

59
.8

50
.6

25
8.

0
18

7.
7

0.
00

1
0.

20
3.

6
3.

4
83

.0
73

.3
30

0.
7

24
9.

5
2.

2
2.

1
55

.0
47

.4
21

2.
1

16
6.

8
0.

00
3

0.
07

3.
4

3.
2

63
.4

57
.5

19
1.

9
17

0.
0

2.
1

2.
0

44
.3

39
.5

14
3.

1
12

3.
3

0.
01

0.
02

2.
8

2.
7

37
.5

34
.2

96
.7

84
.7

1.
9

1.
8

28
.2

25
.8

75
.8

67
.5

V
ar

ia
n

ce
of

th
e

de
le

te
ri

ou
s

al
le

le
fr

eq
ue

n
cy

is
gi

ve
n

�
10

�
6 .

N
�

10
00

,h
�

0.
3,

�
�

10
�

5 ,
an

d
�

�
10

�
7 .

A
cc

ur
ac

y
of

th
e

th
eo

ry
is

ch
ec

ke
d

ag
ai

n
st

n
um

er
ic

al
va

lu
es

gi
ve

n
by

in
te

gr
at

io
n

of
W

ri
gh

t’
s

eq
ua

ti
on

(s
ee

ap
pe

n
d

ix
c)

.
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TABLE 2

Accuracy of the effective size of selection (N s
e) to predict the distribution of deleterious allele frequency

Nm : 0.1 0.3 1 3 10
Neutral FST: 0.71 0.44 0.20 0.07 0.02

h � 0.3, s � 0.1 (Nhs � 30)
E[x] Numerical 3.34E-05 3.34E-05 3.34E-05 3.34E-05 3.33E-05

N S
e 3.34E-05 3.34E-05 3.34E-05 3.33E-05 3.33E-05

V[x] Numerical 2.73E-07 2.71E-07 2.65E-07 2.50E-07 2.06E-07
Ne

S 2.73E-07 2.71E-07 2.65E-07 2.49E-07 2.06E-07
Sk[x] Numerical 31.00 30.90 30.57 29.67 27.06

Ne
S 31.00 30.90 30.56 29.66 27.04

Kurt[x] Numerical 1429.67 1420.76 1390.47 1310.85 1093.12
Ne

S 1429.63 1420.64 1390.07 1309.81 1090.59

h � 0.3, s � 0.01 (Nhs � 3)
E[x] Numerical 3.31E-04 3.31E-04 3.30E-04 3.30E-04 3.31E-04

Ne
S 3.31E-04 3.30E-04 3.30E-04 3.30E-04 3.31E-04

V[x] Numerical 2.4E-05 2.3E-05 1.9E-05 1.3E-05 6.2E-06
Ne

S 2.4E-05 2.3E-05 1.9E-05 1.3E-05 6.2E-06
Sk[x] Numerical 28.05 27.30 25.15 21.08 14.78

Ne
S 28.14 27.31 25.13 20.99 14.68

Kurt[x] Numerical 1120.64 1062.50 905.98 645.13 324.31
Ne

S 1137.81 1069.39 906.58 639.98 319.77

h � 0.05, s � 0.005 (Nhs � 0.25)
E[x] Numerical 0.00126 0.00132 0.00154 0.00202 0.00281

Ne
S 0.00135 0.00153 0.00193 0.00247 0.00305

V[x] Numerical 0.00023 0.00022 0.00018 0.00013 6.5E-05
Ne

S 0.00021 0.00018 0.00013 9E-05 4.7E-05
Sk[x] Numerical 19.26 17.96 14.80 10.21 5.57

Ne
S 19.60 14.06 9.79 6.46 3.93

Kurt[x] Numerical 479.92 419.16 291.98 147.05 48.11
Ne

S 548.01 257.09 127.51 57.97 23.76

h � 0.05, s � 0.0005 (Nhs � 0.025)
E[x] Numerical 0.01365 0.01076 0.01236 0.01712 0.02257

Ne
S 0.07956 0.01278 0.0171 0.02133 0.02459

V[x] Numerical 0.0082 0.00411 0.00225 0.00126 0.00053
Ne

S 0.06101 0.00205 0.00123 0.00068 0.00028
Sk[x] Numerical 8.28 8.57 6.37 3.78 1.95

Ne
S 3.63 5.71 3.25 1.94 1.06

Kurt[x] Numerical 76.38 88.48 54.77 22.56 8.44
Ne

S 13.44 46.36 16.24 7.57 4.30

First moments of the distribution are computed using Wright’s equation for the infinite islands model
(Numerical) and using N S

e in Wright’s equation for a single population. N � 1000, � � 10�6, � � 10�7. Details
of the computation are given in appendix c. Sk, skewness; Kurt, kurtosis.

population, changing the population size by the effective 2). However, for low migration rates and weak selection,
migration increases the local effective size more thansize of selection, and tested it against numerical computa-
predicted by N S

e. Because of this limitation, the effectivetions of Wright’s equation for the infinite island model
size of selection must be used with caution for weak(see appendix c).
selection and further invetigations are needed.Qualitative patterns of the load due to segregating muta-

tions are well predicted by N S
e (see Table 2). In particu-

lar, using N S
e instead of N in Wright’s equation accounts

DISCUSSIONfor the weak purging effect that affects the mean fre-
quency of deleterious alleles, which we previously ne- Heuristic value of the theory and limitations of the
glected. Higher moments of the distribution are also model: In this study, we adapted a diffusion method to

provide general and analytical results to understand thequite well predicted (see skewness and kurtosis in Table
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Figure 8.—Distribution of deleterious effects
of mutations and their consequences. Leptokurtic
distribution of selection coefficients is repre-
sented (see, for example, Keightley 1994). In a
single isolated population (m � 0), mutations with
effect s � slim (slim of the order of 5/N; for example,
see Bataillon and Kirkpatrick 2000) segregate
in low frequency at approximated mutation-selec-
tion equilibrium. These mutations cause inbreed-
ing depression if revealed by consanguineous mat-
ings. Mutations with effect s � slim are fixed and
cause drift load and heterosis (Whitlock et al.
2000) but no inbreeding depression (Bataillon
and Kirkpatrick 2000). Migration among popu-
lations greatly reduces slim and thus “unmasked”
locally fixed mutations.

effects of population subdivision on patterns of inbreed- stepping-stone model, local drift may carry a deleterious
gene to high frequency even if the whole metapopula-ing depression, heterosis, and the load due to partially

recessive deleterious mutations. Because this method tion size is high. So, local migration and migration in
a small island metapopulation (small K) do not increaseleads to linear equations with respect to the moments of

the distribution of allele frequency, any kind of subdivi- the efficacy of selection much. Similar results were ob-
tained using stochastic simulations by Higgins and Lynchsion can be studied. The more general and heuristic

result we obtained is that one can use an index of effec- (2001), who showed that mutational meltdown can be
important in small metapopulations or under local mi-tive size of selection to interpret the effect of subdivision

by reference to single-population theory. Accurate ana- gration.
As in other models (Whitlock et al. 2000; Theo-lytical results are obtained for strong selection. Our

effective size of selection is still a useful index for a dorou and Couvet 2002; Whitlock 2002), our predic-
tions hold for one locus. Extrapolation for total fitness,wider range of situations in which our analytical results

may be less accurate. In a single population, deleterious which is of interest for the evolution of mating systems
and conservation issues, must assume independencealleles for which Ns � 1 segregate in low frequency while

those for which Ns � 1 can be nearly fixed. In a local among loci. Under drift and subdivision this can be
misleading because linkage disequilibrium can lessendeme of a subdivided population, qualitative predictions

can be easily made using the same dichotomy but replac- the efficiency of selection (Hill and Robertson 1966).
Under the assumptions we used (strong selection, Nhs �ing N by N S

e. Compared to a single isolated population,
the main effect of migration is thus to increase the 1), we expected that such associations should develop

only between tightly linked loci. However, if there is alocal effective size and consequently to increase the
proportion of mutations that can be efficiently elimi- wide distribution of deleterious effects of alleles, inter-

ferences between weakly and strongly selected loci arenated (1/N S
e � 1/N , see Figure 8). Furthermore, this

condition is conservative because migration helps purge more likely to happen (Stephan et al. 1999). Multilocus
extension of such models is thus needed to answer tothe drift load more efficiently than predicted by N S

e.
The use of our effective size of selection also offers these questions.

The genetic basis of inbreeding depression and heter-a synthetic way of comparing the effect of different
population structures (see Figure 1). In the island model, osis in subdivided populations: Inbreeding depression

and heterosis are often seen as two aspects of the samefor a large number of demes, the effective size of selec-
tion increases linearly with migration. A few migrants genetic process. However, we show here that their ge-

netic basis can be quite different. Inbreeding depressioncan boost the effective size. However, if the number of
demes is small, the effect of migration on the effective is primarily due to mutations with strong effect (for

which F S
ST is low, see Equation 18) whereas heterosis issize of selection is limited (N S

e � NeK). If there is isola-
tion by distance, the effect of migration is less important. due to mutations of weak effect (for which F S

ST is high,
see Equation 20). The level of gene flow and the localLocal migration does not greatly increase the effective

size because the distributions of deleterious allelic fre- population size determine which kind of mutations will
be the primary contributors to inbreeding depressionquencies in neighboring demes are correlated. This ag-

grees with Maruyama (1972c), who showed that, in a and heterosis (see Figure 8). The limit between the two
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classes of mutations should depend on the local effective of a modifier causing selfing. With a stochastic model
of selection on selfing rates in a continuous structuredpopulation size. This analysis stresses important differ-

ences in the expected behavior of inbreeding depres- population, Ronfort and Couvet (1995) also show
that population structure should maintain intermediatesion and heterosis that can no longer be considered as

two exact opposite sides of the same process. selfing rates.
However, as already noted, our model and othersContrary to this interpretation, one can argue that it

depends on the definition of heterosis, which differs (Whitlock et al. 2000; Theodorou and Couvet 2002;
Whitlock 2002) are basically single-locus models andfrom that generally given by plant breeders: “When in-

bred lines are crossed, the progeny show an increase of associations between loci are not taken into account. To
understand the real impact of population subdivisionthose characters that previously suffered a reduction

from inbreeding. . . . The amount of heterosis is the on the evolution of mating systems, such associations in
subdivided populations should be modeled. Moreover,difference between the crossbred and the inbred means”

(Falconer 1989, p. 254). Indeed, for completely autog- migration rates can also evolve in metapopulations in
response to sib competition and to spatio-temporal vari-amous populations, according to this definition, hetero-

sis is the exact opposite of inbreeding depression. How- ability in population sizes (e.g., Olivieri and Gouyon
1997). Heterosis could also be another factor that selectsever, in all other cases, inbred lines have to be produced

before outcrossing them. During recurrent selfing, purg- for increasing migration rates (Morgan 2002). How-
ever, the coevolution of mating system, inbreeding de-ing of lethals and fixation of mildly deleterious alleles can

occur. Consequently heterosis is not just the reverse of pression, and migration is still a challenging question.
Implications for conservation biology: The accumula-inbreeding depression that can be estimated in the base

population. Each line can be viewed as a single isolated tion of deleterious mutations in small populations
should increase the risk of extinction due to the processpopulation and heterosis is well defined by the excess

of mean fitness of individuals produced by outcrosses called “mutational meltdown” (Lynch et al. 1995). A
recent simulation study (Higgins and Lynch 2001) hasbetween demes (equaling lines) relative to mean fitness

of individuals produced by outcrosses within demes shown that this process can also occur in metapopul-
ations. The increase in the risk of extinction is mainly(equaling mean fitness of a line).

Consequences for the evolution of mating systems in due to the drift load. A simple conclusion of our analysis
is that migration between populations efficiently purgessubdivided populations: Inbreeding depression is a key

parameter in the evolution of mating system because it the main part of the load, by converting the drift load
into load due to segregating mutations; i.e., more muta-balances the “cost of outcrossing” (Fisher 1941; Uye-

noyama 1986). The majority of theoretical studies mod- tions can be selected against (see Figure 8). Moreover,
long-distance migration purges the drift load more effi-eling the evolution of mating systems assumes single

and large (infinite) populations (but see Holsinger ciently than local migration does (Higgins and Lynch
2001); the effective size of selection is higher in the1986). Here, we show that drift and subdivision can

modify the patterns of inbreeding depression and heter- island model than in the stepping-stone one (see Figure
1). In our model, we neglect the fact that intermediateosis and should influence the direction of selection on

the mating systems. In our analysis, the mating system migration rates may favor the purging of recessive segre-
gating alleles (see discussion above and Whitlockdoes not evolve but it determines, jointly with the pat-

tern of migration, the amount of inbreeding depression. 2002). However, intermediate migration rates can re-
duce the load due to segregating mutations but increaseIn subdivided populations, two opposite pressures can

influence the evolution of selfing. Increased subdivision, the drift load (Whitlock et al. 2000). We thus think
that for conservation of endangered populations, highjust as drift, leads to a decline of within-deme inbreeding

depression, which reduces the advantage of outcrossing. connection among populations should be less risky and
globally much better than maintaining intermediate mi-However, subdivision also reduces the cost of outcross-

ing (Uyenoyama 1986). Conversely, drift and subdivi- gration rates. In addition, such optimal migration rates
should be very difficult to estimate. Such a positive demo-sion also increase between-deme inbreeding depres-

sion, which may favor outcrossing with migrants. For graphic effect of gene flow between populations, known
as the “genetic rescue effect,” has been documented inweaker selection against deleterious alleles (Ns � 1),

Theodorou and Couvet (2002) found similar patterns metapopulations of Silene (Richards 2000) and Daph-
nia (Ebert et al. 2002; Haag et al. 2002). Advantagesof inbreeding depression and heterosis. Taking account

of both of these patterns and the cost of outcrossing, to migrants can increase the effective migration rates
(see also Ingvarsson and Whitlock 2000) and protectthey suggest that mixed-mating systems should be stable

for intermediate migration rates, especially with pollen some demes from extinction, especially small and isolated
ones (Richards 2000).migration (that is not assumed in our study). In this case,

heterosis increases as the selfing rate increases (because Other implications of our analysis include method-
ological considerations. The load would be an appro-selfing limits pollen migration). Advantage to migrants

increases with selfing and can prevent the full invasion priate measure for estimating the impact of population
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size and subdivision on the fitness of small populations. breeding depression would lead to the reverse conclusion,
However, this quantity cannot be directly estimated. Ex- that central populations suffer higher load than isolated
perimental designs for the estimation of inbreeding de- ones. The comparison of inbreeding depression and
pression have been proposed to address this question heterosis shows that the architecture of the load differs
(Charlesworth et al. 1990a; Deng and Lynch 1996; between central and isolated populations. The load is
Deng 1998). Bataillon and Kirkpatrick (2000) and weak and mainly due to segregating mutations in central
others have already stressed that inbreeding depression populations whereas it is quite high and mainly due to
is not a useful indication of the load in small popula- fixed mutations in isolated populations. We thus suggest
tions. In subdivided populations this conclusion still clearly distinguishing among inbreeding depression,
holds. But our analysis shows that in subdivided popula- heterosis, and the load in experimental studies, through
tions, patterns of heterosis are similar to patterns of the the determination of the levels of population structure
load and may constitute a measure of the load more at which fitness-related traits are compared. This should
appropriate than inbreeding depression for conserva- allow easier comparison among studies and more com-
tion purposes. Moreover, mutations that cause the high- plete analysis of the consequences of deleterious muta-
est load also cause the highest heterosis but cause no tions in natural populations.
inbreeding depression (Bataillon 2000b). More pre- We thank M. Whitlock, K. Theodorou, and D. Couvet for helpful
cisely, heterosis can provide an indication of the local discussions and comments and for providing us their manuscripts
drift load (see also Whitlock et al. 2000), i.e., the excess before publication. We also thank N. Bierne and M. Uyenoyama and

two anonymous reviewers for comments on the manuscripts and F.of load due to fixation of deleterious mutations in small
Rousset and I. Olivieri for helpful discussions. S.G. acknowledges apopulations compared to the load due to segregating
Ph.D. grant from the French Ministry of Education and Research.mutations maintained in large ones. We thus propose
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that joint measures of inbreeding depression and heter- by the French Ministère de l’Aménagement du Territoire et de l’Envir-
osis provide a general picture of the architecture of onnement through the national program Diversitas, fragmented pop-

ulation network (contract 98/153), as well as by the European Com-the load in subdivided populations. The load due to
munity Fragland project (headed by I. Hanski). This is publicationsegregating mutations could be estimated through in-
ISEM 2003-051 of the Institut des Sciences de l’Evolution de Montpellier.breeding depression-based methods as already proposed
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2208 S. Glémin, J. Ronfort and T. Bataillon

by K. Kojima. Springer-Verlag, Berlin/Heidelberg, Germany/ Mukai, T., S. I. Chigusa, L. E. Mettler and J. F. Crow, 1972 Muta-
tion rate and dominance of genes affecting viability in DrosophilaNew York.
melanogaster. Genetics 72: 335–355.Crow, J. F., and M. Kimura, 1970 An Introduction to Population Genet-

Nagylaki, T., 1989 The diffusion model for migration and selec-ics Theory, Alpha Edition. Burgess, Minneapolis.
tion, pp. 55–75 in Some Mathematical Questions in Biology: Models inDarwin, C., 1876 The Effects of Cross and Self-Fertilization in the Vegetal
Population Biology, edited by A. Hastings. American MathematicalKingdom. John Murray, London.
Society, Providence, RI.Deng, H. W., 1998 Characterization of deleterious mutations in

Nordborg, M., B. Charlesworth and D. Charlesworth, 1996outcrossing populations. Genetics 150: 945–956.
The effect of recombination on background selection. Genet.Deng, H., and Y. Fu, 1998 On the three methods for estimating
Res. 67: 159–174.deleterious genomic mutation parameters. Genet. Res. 71: 223–

Ohta, T., and M. Kimura, 1969 Linkage disequilibrium at steady236.
state determined by random genetic drift and recurrent muta-Deng, H.-W., and M. Lynch, 1996 Estimation of deleterious-muta-
tion. Genetics 63: 229–238.tion parameters in natural populations. Genetics 144: 349–360.

Ohta, T., and M. Kimura, 1971 Linkage disequilibrium between twoEbert, D., C. Haag, M. Kirkpatrick, M. Riek, J. W. Hottinger et
segregating nucleotide sites under the steady flux of mutations inal., 2002 A selective advantage to immigrant genes in a Daphnia
a finite population. Genetics 68: 571–580.metapopulation. Science 295: 485–488.

Olivieri, I., and P.-H. Gouyon, 1997 Evolution of migration rateEldridge, M. D. B., J. M. King, A. K. Loupis, P. B. S. Spencer,
and other traits. The metapopulation effect, p. 511 in Metapopula-A. C. Taylor et al., 1999 Unprecedented low levels of genetic
tion Biology: Ecology, Genetics, and Evolution, edited by I. A. Hanskivariation and inbreeding depression in an island population of
and M. E. Gilpin. Academic Press, London.the black-footed rock-wallaby. Conserv. Biol. 13: 531–541.

Ouborg, N., and R. Van Treuren, 1994 The significance of geneticFalconer, D. S., 1989 Introduction to Quantitative Genetics. Longman,
erosion in the process of extinction. IV. Inbreeding load andNew York. heterosis in relation to population size in the mint Salvia pratensis.Fisher, R. A., 1941 Average excess and average effect of a gene Evolution 48: 996–1008.substitution. Ann. Eugen. 11: 52–63. Petry, D., 1983 The effect on neutral gene flow of selection at a

Haag, C. R., J. W. Hottinger, M. Riek and D. Ebert, 2002 Strong linked locus. Theor. Popul. Biol. 23: 300–313.
inbreeding depression in a Daphnia metapopulation. Evolution Richards, C. M., 2000 Inbreeding depression and genetic rescue
56: 518–526. in a plant metapopulation. Am. Nat. 155: 283–294.

Haldane, J. B. S., 1937 The effect of variation on fitness. Am. Nat. Robertson, A., 1970 The reduction in fitness from genetic drift at
71: 337–349. heterotic loci in small populations. Genet. Res. 15: 257–259.

Higgins, K., and M. Lynch, 2001 Metapopulation extinction caused Ronfort, J., and D. Couvet, 1995 A stochastic model of selection on
by mutation accumulation. Proc. Natl. Acad. Sci. USA 98: 2928– selfing rates in structured populations. Genet. Res. 65: 209–222.
2933. Saccheri, I., M. Kuussaari, M. Kanakare, P. Vikman, W. Fortelius

Hill, W. G., and A. W. Robertson, 1966 The effect of genetic et al., 1998 Inbreeding and extinction in a butterfly metapopula-
linkage on the limits to artificial selection. Genet. Res. 8: 269–294. tion. Nature 392: 491–494.

Holsinger, K. E., 1986 Dispersal and plant mating systems: the Schemske, D. W., and R. Lande, 1985 The evolution of self-fertiliza-
evolution of self-fertilization in subdivided populations. Evolution tion and inbreeding depression in plants. II. Empirical observa-
40: 405–413. tions. Evolution 39: 41–52.

Husband, B. C., and D. W. Schemske, 1996 Evolution of the magni- Sheridan, P. M., and D. N. Karowe, 2000 Inbreeding, outbreeding,
tude and timing of inbreeding depression in plants. Evolution and heterosis in the yellow pitcher plant, Sarracenia flava (Sarrace-
50: 54–70. niaceae), in Virginia. Am. J. Bot. 87: 1628–1633.

Ingvarsson, P. K., and M. C. Whitlock, 2000 Heterosis increases the Stephan, W., B. Charlesworth and G. McVean, 1999 The effect
effective migration rate. Proc. R. Soc. Lond. Ser. B 267: 1321–1326. of background selection at a single locus on weakly selected,

Keightley, P. D., 1994 The distribution of mutation effects on partially linked variant. Genet. Res. 73: 133–146.
Theodorou, K., and D. Couvet, 2002 Inbreeding depression andviability in Drosophila melanogaster. Genetics 138: 1315–1322.

heterosis in a structured population; influence of the matingKeller, L. F., and D. M. Waller, 2002 Inbreeding effects in wild
system. Genet. Res. 80 (2): 107–116.populations. Trends Ecol. Evol. 17: 230–241.

Uyenoyama, M. K., 1986 Inbreeding depression and the cost ofKimura, M., and T. Ohta, 1971 Theoretical Aspects of Population Genet-
meiosis: the evolution of selfing in population practicing biparen-ics. Princeton University Press, Princeton, NJ.
tal inbreeding. Evolution 40: 388–404.Kimura, M., T. Maruyama and J. F. Crow, 1963 The mutation load

Van Oosterhout, C., W. G. Zijlstra, M. K. Van Heuven and P. M.in small populations. Genetics 48: 1303–1312.
Brakefield, 2000 Inbreeding depression and genetic load inLande, R., and D. W. Schemske, 1985 The evolution of self-fertiliza-
laboratory metapopulations of the butterfly Bicyclus anynana. Evo-tion and inbreeding depression in plants. I. Genetic models.
lution 54: 215–225.Evolution 39: 24–40.

Waller, D. M., 1993 The statics and dynamics of mating systemsLynch, M., J. Conery and R. Bürger, 1995 Mutational meltdowns
evolution, pp. 97–117 in The Natural History of Inbreeding andin sexual populations. Evolution 49: 1067–1080.
Outbreeding, edited by N. W. Thornhill. University of ChicagoMaruyama, T., 1972a Distribution of gene frequencies in a geo-
Press, Chicago/London.graphically structured population. I. Distribution of neutral genes

Whitlock, M. C., 2002 Selection, load, and inbreeding depressionand genes with small effect. Ann. Hum. Genet. 35: 411–423. in a large metapopulation. Genetics 160: 1191–1202.Maruyama, T., 1972b Distribution of gene frequencies in a geo- Whitlock, M. C., P. K. Ingvarsson and T. Hatfield, 2000 Local
graphically structured population. II. Distribution of deleterious drift load and the heterosis of interconnected populations. He-
genes and neutral genes. Ann. Hum. Genet. 35: 425–432. redity 84: 452–457.

Maruyama, T., 1972c Distribution of gene frequencies in a geo- Wolfram, S., 1996 The Mathematica Book. Cambridge University
graphically structured population. III. Distribution of deleterious Press, Cambridge, UK.
genes and genetic correlation between different localities. Ann. Wright, S., 1969 Evolution and the Genetics of Populations, Vol. 2: The
Hum. Genet. 36: 99–108. Theory of Gene Frequencies. University of Chicago Press, Chicago.

Morgan, M. T., 2002 Genome-wide deleterious mutation favors dis-
persal and species integrity. Heredity 89: 253–257. Communicating editor: M. Uyenoyama



2209Inbreeding Depression in Subdivided Populations

APPENDIX A: F S
ST AS A FUNCTION OF THE MOMENTS OF 


The total genetic variance of allele frequency over the whole metapopulation, �2
T, can be decomposed into the

within-deme genetic variance, �2
W, and between-deme genetic variance, �2

B. F S
ST can be defined as the ratio of the

genetic variance between demes over the total genetic variance.
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Expressions for variances are given by
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Taking the expectation of �2
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B, and �2
W over the 
 distribution, and considering the symmetry of the model, we

obtain
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Using (A3a) and (A3b) in (A1), we obtain
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which reduces to
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E
[x 2] � E
[x]2

E
[x](1 � E
[x])
(A5)

for the infinite island model.

APPENDIX B: MOMENTS OF THE DISTRIBUTION OF DELETERIOUS
ALLELE FREQUENCY IN THE STEPPING-STONE MODEL

We consider a circular stepping-stone model with K panmictic demes of size N, with K � 2p or K � 2p � 1. We
assume local (and equal) migration between two adjacent demes. The diffusion terms are

M�x1
� �hsx1 � (1 � x1)� � mx1 �

m
2

(xK � x2)

M�xi
� �hsxi � (1 � xi)� � mxi �

m
2

(xi�1 � xi�1) for i � 2, . . . , K � 1

M�xK
� �hsxK � (1 � xK)� � mxK �

m
2

(xK�1 � x1)

V�xi
�

xi(1 � xi)
2N

for i � 1, . . . , K

W�xi�xj
� 0 for i � j .

First-order moments: Using the function f(x1, . . . , xK) � xi, Equation 5 implies
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E
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Under the symmetry of the model, all the E
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[x], giving

E
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Second-order moments: Using the function f(x1, . . . , xK) � x 2
i , Equation 5 implies
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Using the function f(x1, . . . , xK) � xixi�1, Equation 5 implies
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Using the same symmetry arguments,
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Let the function be f(x1, . . . , xK) � xixi�k with 1 � k � p. Equation 5 implies
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Using the same symmetry arguments,
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Finally, using the function f(x1, . . . , xK) � xixi�p, Equation 5 implies
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Under the symmetry of the model and noting that xi�p�1 � xi�p�1,
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Writing A � 2(hs � � � m) and C � (2� � 1/2N)�/hs and neglecting �2/hs terms in the left-hand side, we need
to solve the following system:
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System solving: The system can be reduced to one general recurrent equation and two specific “boundary”
conditions:
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For i � 1, . . . p � 1, E
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2, where �1 and �2 are the roots of the characteristic equation m�2 � A� �
m � 0:
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To determine a and b we use Equation B7b for i � 1 and i � p � 1, replacing E
[x 2] and E
[xxp] by their
expressions given by (B7a) and (B7c). We thus obtain two linear equations in a and b:








2CNm
1 � 2AN

0








�








�1�A � m � 4Nm
1 � 2AN

� �1�� �2�A � m� 4Nm
1 � 2AN

� �2��
�p�2

1

A
(Am � A2�1 � 2m2�2

1)
�p�2

2

A
(Am � A2�2 � 2m2�2

2)















a

b








.

In the case of the infinite stepping-stone model,

a �
2CNm

�1(2A2N � A(1 � 2Nm�1) � m(4Nm � �1))
(B8a)

and

b � 0. (B8b)

So we obtain

E
[x 2] �
2C

1 � 2 √A2 � 4Nm2
(B9a)

E
[xxi] �
21�iC(A � √A2 � 4m2)i

mi(1 � 2 √A2 � Nm2)
, (B9b)

which give the following expressions, replacing A and C by their expression

E
[x 2] �
�

hs(1 � 4N √hs(2m � hs))
� O(�2) (B10)

E
[xxi] �
�

hs(1 � 4N √hs(2m � hs))�
m � hs � √hs(2m � hs)

m �
i

� O(�2) . (B11)

APPENDIX C: NUMERICAL COMPUTATION OF WRIGHT’S EQUATION

For the infinite island model, we can compute numerical values of inbreeding depression, mutation load, and
heterosis, using Wright’s distribution for 
,


(x) � C
1

V�x

e�(2M�x /V�x)dx (C1)

with

M�x �
x(1 � x)(1 � FIS)(1 � hs) � (x 2 � FISx(1 � x))(1 � s)

W
� �(1 � x) � �x � m(x � x) � x (C2a)

V�x �
x(1 � x)

2Ne

, (C2b)

where x is the average frequency of the deleterious allele over all the demes, C is a normalization constant such
that �1

0 
(x)dx � 1, W � 1 � 2hs(1 � FIS)x(1 � x) � s(x 2 � FISx(1 � x)), and Ne � N/(1 � FIS).
Equation (C1) can be numerically solved by iteration of the integration of �1

0 x
(x)dx until x � �1
0 x
(x)dx. Then

we take the expectations given by Equations 3a, 3b, and 3c over this distribution for inbreeding depression, the
load, and heterosis. For the F S

ST, we use Equation A5.
To test the usefulness of the effective size of selection, we also use Wright’s equation for a single population,

replacing Ne by N S
e, with
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M�x �
x(1 � x)(1 � FIS)(1 � hs) � (x 2 � FISx(1 � x))(1 � s)

W
� �(1 � x) � �x � x (C3a)

V�x �
x(1 � x)

2N S
e

. (C3b)

In both cases, direct calculations were done using the function NIntegrate of the mathematical software package
Mathematica (Wolfram 1996).


